Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276024

RESUMO

BackgroundShort-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. MethodsWe used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. ResultsOver 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. ConclusionsOur results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks. Code and data availabilityAll data and code are publicly available on Github: covid19-forecast-hub-europe/euro-hub-ensemble.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265810

RESUMO

BackgroundDuring the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. MethodsWe evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess forecast calibration. The presented work is part of a pre-registered evaluation study and covers the period from January through April 2021. ResultsWe find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods (i.e., combinations of different available forecasts) show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (alpha) variant in March 2021, prove challenging to predict. ConclusionsMulti-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance. Plain language summaryThe goal of this study is to assess the quality of forecasts of weekly case and death numbers of COVID-19 in Germany and Poland during the period of January through April 2021. We focus on real-time forecasts at time horizons of one and two weeks ahead created by fourteen independent teams. Forecasts are systematically evaluated taking uncertainty ranges of predictions into account. We find that combining different forecasts into ensembles can improve the quality of predictions, but especially case numbers proved very challenging to predict beyond quite short time windows. Additional data sources, in particular genetic sequencing data, may help to improve forecasts in the future.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248826

RESUMO

We report insights from ten weeks of collaborative COVID-19 forecasting for Germany and Poland (12 October - 19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20043109

RESUMO

On the basis of a semi-realistic SIR microsimulation for Germany and Poland, we show that the R0 parameter interval for which the COVID-19 epidemic stays overcritical but below the capacity limit of the health care system to reach herd immunity is so narrow that a successful implementation of this strategy is likely to fail, which is in contrast to results obtained from classical differential equation models. Our microsimulation is based on official census data and involves household composition and age distribution as the main population structure variables. Outside household contacts are characterised by an out-reproduction number R* which is the only free parameter of the model. For a subcritical domain we compute the time till extinction and prevalence as a function of the initial number of infected individuals and R*. For the Polish city of Wrocaw we also discuss the combined impact of testing coverage and contact reduction. For both countries we estimate R* for disease progression until 20th of March 2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...